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1. Introduction 
This paper addresses a different set of problems from the ones discussed in a separate paper, 

entitled “Reliable Extreme-Scale Stochastic Dynamics Simulation based on Generalized Interval 

Probability – I. Uncertainty Dynamics”, where the basics of generalized interval probability and 

stochastic dynamics simulation under both aleatory and epistemic uncertainties are introduced. 

In modeling and simulation of multiscale complex systems, information collected by either 

physical or computational experiments is likely to have different forms and qualities, because of the 

constraints in instrument limitation, time, and cost associated with the experiments. Measurement and 

simulation results from different scales and physical domains need to be integrated consistently to make 

robust decisions under aleatory and epistemic uncertainties.  

2. Cross-scale cross-domain information assimilation and model validation 
We recently developed a generalized hidden Markov model (GHMM) to capture dependency 

relationships of uncertain variables at multiple scales or in different physical domains. The spatial and 

scale correlations among hidden and observable variables are represented by generalized interval 

probability. These scales may also be constituted by domains (e.g., time, different loosely coupled model 

environments, and physical domains).  

The information with both uncertainty components can be assimilated based on a generalized 

interval Bayes’ rule (GIBR), which is computationally much more efficient than those combination and 

update rules proposed in other forms of imprecise probability. The GHMM has been applied in multiscale 

materials-product design [1], where nanoscale properties are inferred from mesoscale and macroscale 

experimental measurements. It has also been applied in the validation of molecular dynamics (MD) 

simulation of nuclear materials irradiation [2], where the MD models are validated from macroscopic 

experiments with the consideration of measurement errors. 

Similar to the Bayesian approach, the validation of simulation 

models under both epistemic and aleatory uncertainties at 

multiple scales can be performed based on GIBR.  

One example is shown in Fig.1, where interval 

cumulative distribution functions (c.d.f.’s) of point defect 

generation from MD simulations can be constructed with the 

incorporation of model and parameter errors. They are then 

updated from the macroscopic measurements of electrical 

resistivity change rates based on GIBR. The comparison 

between prior and posterior interval probabilities provides the 

necessary information for validation. Interval probability 

provides the extra information of how significant the epistemic 

component of uncertainty is in the model validation. With this 

extra information, a different decision, such as the need to collect more data or reduce measurement 

errors, can be made, instead of just whether the model is validated or not.  

3. Reliable kinetic Monte Carlo simulation 
Kinetic Monte Carlo (KMC) simulation has been widely used in predicting chemical reaction, 

material degradation, crack propagation, protein folding, and many others as the alternative to solving the 

chemical master equation. Unknown, imprecise, or non-stationary propensity function in KMC is a 

common issue to affect its accuracy and reliability of prediction.  A reliable kinetic Monte Carlo (R-

KMC) simulation approach [3] that incorporates epistemic uncertainty with interval-valued parameters in 

stochastic simulation has been developed.  

Fig.1: Interval c.d.f. of Frenkel pair 
generation from MD simulations at 
different recoil energy levels 
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The simulation mechanism is rigorously 

based on the theoretical model of interval master 

equation. A multi-event random set sampling 

algorithm was developed to simulate based on 

interval-valued propensities. The simulated system is 

evolving simultaneously with the best- and worst-case 

scenarios based on the mathematically verifiable 

algorithm. It is shown that R-KMC converges to the 

classical KMC when interval-valued propensities 

shrink to real values. The feasibility and efficiency of 

the R-KMC mechanism in simulating chemical 

reactions have been demonstrated.  

As shown in Fig.2, the evolution of the 

number of species in reactions is captured with the consideration of epistemic uncertainty. Interval 

bounded results are given without the need of multiple simulation runs for sensitivity analysis, which 

saves time and energy in extreme-scale computation. 

4. Sample-free global sensitivity analysis 
Different from the traditional variance-based 

statistical sensitivity analysis, where data from either 

physical experiments or Monte Carlo sampling are 

required, we developed a sample-free global 

sensitivity analysis approach [4] so that the sensitivity 

of model parameters and inputs can be assessed 

without the assumption of probability distributions and 

samplings.  

Based on generalized interval, several metrics 

of indeterminacy and information gain are defined so 

that the uncertainty effect of input on the output in a 

functional relationship f(x)=y can be assessed without 

the information of statistical variances or local 

gradients. The sensitivity levels of inputs can be ranked based on the least information of lower and upper 

bounds only. Fig.3 shows an example of sensitivity rankings among six inputs with respect to five outputs 

in an engineering design problem. The rankings are based on sensitivity zones and improve the 

robustness. The new sample-free global sensitivity analysis approach provides a computationally efficient 

approach to analyze complex systems with the minimum level of functional evaluations.  
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Fig.2: interval-valued average time in R-KMC gives 

best-case and worst-case estimations of species 

Fig.3: An example of sensitivity rankings among six 

inputs w.r.t. five outputs with sensitivity zones 
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